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Abstract

The unsteady three-dimensional free convection flow in the stagnation-point region on a general curved isothermal surface placed in an ambient
fluid is studied. By introducing new similarity transformations, the momentum and energy balance equations are reduced to a set of three fully
coupled nonlinear partial differential equations. These equations are solved analytically for some various values of the ratio of the two principal
radii of curvature. The accurate series solutions are obtained which are uniformly valid for all dimensionless time in the whole spatial region
0 � η < ∞.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The phenomenon of free convection will be happened when
a surface or body in a fluid is sudden heated. The reason is
that the sudden temperature changes of the surface cause den-
sity variations leading to buoyancy forces. This process of heat
transfer is encountered in the natural environment such as in at-
mosphere and oceanic circulations and in technology such as in
power transformers, nuclear reactor, etc. Several excellent re-
view papers of the literature related to the free convection flows
are presented by Ede [1], Gebhart [2] and Gebhart et al. [3].
Poots [4] investigated steady three dimensional steady free con-
vection near the lower stagnation point on an isothermal curved
surface. Banks [5] extended the calculations of Poots [4] to neg-
ative values of c corresponding to saddle points of attachment.
Williams et al. [6] investigated the unsteady free convection
flow over a vertical flat plate under the assumption that the wall
temperature varies with time and distance and found possible
semi-similar solutions for a variety of classes of wall temper-
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ature distributions. Takhar et al. [7] studied the unsteady free
convection boundary-layer flow in the forward stagnation-point
region of a sphere with time-dependent angular velocity in an
ambient fluid. Slaouti et al. [8] made an analysis on the unsteady
free convection flow in the stagnation-point region of a heated
three-dimensional body placed in an ambient fluid. All of these
kinds of problems are studied, theoretically, numerically or ex-
perimentally, by many researchers such as Merkin [9], Carey
[10], Merkin and Mahmood [11], Kumari et al. [12], Miyamoto
[13], Soundalgekar and Ganesan [14], Cheng [15], Aziz and
Hellums [16], Banks [17], Suwono [18], Xu [19], Wang [20].

The homotopy analysis method (HAM) [21–24] is an power-
ful analytical tool for nonlinear problems. It has been accepted
by more and more researchers, and many of their work [25–
40] have been appeared in various fields. Unlike perturbation
techniques, it is independent of any small physical parameters
at all. Different from all previous analytic methods, the homo-
topy analysis method provides us with a simple way to ensure
the convergence of the solution series, so that we can always
get accurate enough approximations. Currently, it is pointed
out [25–28] that the so-called “homotopy perturbation method”
[41] proposed in 1999 is only a special case of the homotopy
analysis method propounded in 1992 [21,22]. All of these ver-
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ify the generality and validity of the homotopy analysis method
for nonlinear problems.

The object of this paper is to extend the work of Poots [4]
to the unsteady case. By means of new similarity transforma-
tions, the original momentum and energy balance equations are
reduced to a set of three fully coupled nonlinear partial differen-
tial equations. It is convenient to choose time scale ξ so that the
region of time integration 0 � t < ∞ becomes finite, 0 � ξ � 1.
Note that this transformation may reduce the calculation quan-
tities, thus the convergent results may be recovered more easier.
The homotopy analysis method will then be employed to solve
this problem. By introducing an embedding parameter q the
nonlinear ordinary differential equation is converted to a linear
differential equation at q = 0. When q evolves, the differen-
tial equation becomes the original one at q = 1. This technique
has been used in a variety of nonlinear problems and the de-
tails can be found in Liao [22]. It is the first time that the
homotopy analysis method [22] is applied to study the unsteady
free convection and heat transfer phenomena, to the best of our
knowledge.

2. Mathematical description

Consider the unsteady free convection boundary-layer flow
in the stagnation-point region of a heated three-dimensional
body placed in an ambient fluid. It is assumed that at time t = 0,
the three-dimensional body and the fluid are at rest and they
have the same constant temperature T∞. Then at time t = 0,
the surface temperature of the body is raised from T∞ to the
constant value Tw , where Tw > T∞. Under these conditions the
governing equations for the unsteady boundary layer flow and
heat transfer for this problem are
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where u, v and w are the velocity components in the x-, y- and
z-directions, t denotes the time, ρ, β , ν and α are, respectively,
the density, the bulk coefficient of the thermal expansion, kine-
matic viscosity of the fluid and the thermal diffusivity of the
fluid. a and b are the principal curvatures of the body at the
stagnation point. The corresponding initial and boundary con-
ditions are

t < 0: u = v = w = 0, T = T∞ (5a)

t � 0: u = 0, v = 0, w = 0, T = Tw at z = 0 (5b)

t � 0: u → 0, v → 0, T → 0 as z → +∞ (5c)

Following Williams and Rhyne [42], we introduce the new
similarity transformations
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where Gr = gβ(Tw − T∞)/(a3ν2) is the Grashof number.
Substituting (6) into Eqs. (1)–(4), we have
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subject to the boundary conditions

F(0, ξ) = S(0, ξ) = ∂F (η, ξ)
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where c = b/a is a positive constant, Pr = ν/α is the Prandtl
number. We shall only consider the case 0 � c � 1 since most
shapes of practical interest lie between cylinder (c = 0) and
sphere (c = 1). In this case, both a and b are positive, thus solu-
tions of the resulting equations lead to stagnation points which
are nodal points. However a or b could also be negative which
leads to saddle points of attachment −1 � c � 0. A more de-
tailed analysis for this physical model can be found in [8].

When ξ = 0, corresponding to τ = 0, we have from (7), (8)
and (9) that
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The above equations (11), (12) and (13) have the exact solutions
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When ξ = 1, corresponding to τ → +∞, we have
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The quantities of physical interest in this problem are the local
skin friction coefficients, Cf x and Cfy , and the local Nusselt
number, Nu, which can be expressed as
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3. Homotopy analysis solution

3.1. HAM deformation equations

According to boundary conditions (10), it is nature that
F(η, ξ), S(η, ξ) and G(η, ξ) can be expressed by the function{
ξkηm exp(−nη) | k � 0, n � 0, m � 0

}
(22)

in the following form
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where ak
m,n, bk

m,n and ck
m,n are coefficients. These provide us

with the Solution Expressions for F(η, ξ), S(η, ξ) and G(η, ξ).
According to the Solution Expressions (23a)–(23c) and from
the boundary conditions (10), it is convenient to choose

F0(η, ξ) = S0(η, ξ) = 0, G0(η, ξ) = exp(−η) (24a)

as the initial approximations of F(η, ξ), S(η, ξ) and G(η, ξ),
besides to choose
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as the auxiliary linear operators, which have the following prop-
erties

Lf

[
C1 exp(−η) + C2 exp(η) + C3

] = 0 (26a)

Ls

[
C4 exp(−η) + C5 exp(η) + C6

] = 0 (26b)

Lg

[
C7 exp(−η) + C8 exp(η)

] = 0 (26c)

where C1, C2, C3, C4, C5, C6, C7 and C8 are constants. Based
on (7), (8) and (9), we are led to define the nonlinear operators
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Let h̄ denote the non-zero auxiliary parameters. We con-
struct the so-called zeroth-order deformation equations
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where q ∈ [0,1] is an embedding parameter, H(η) = exp(−η)

is an auxiliary function.
Obviously, when q = 0 and q = 1, the above HAM defor-

mation equations (28a)–(28c) have the solutions

Φ(η, ξ ;0) = F0(η, ξ), Θ(η, ξ ;0) = S0(η, ξ)

Ψ (η, ξ ;0) = G0(η, ξ) (30a)

and

Φ(η, ξ ;1) = F(η, ξ), Θ(η, ξ ;1) = S(η, ξ)

Ψ (η, ξ ;1) = G(η, ξ) (30b)

respectively. Thus as q increases from 0 to 1, Φ(η, ξ ;q),
Θ(η, ξ ;q) and Ψ (η, ξ ;q) vary from the initial guesses F0(η, ξ),
S0(η, ξ) and G0(η, ξ) to the solutions F(η, ξ), S(η, ξ) and
G(η, ξ) of the considered unsteady problem, respectively. So,
expanding Φ(η, ξ ;q), Θ(η, ξ ;q) and Ψ (η, ξ ;q) in Taylor’s se-
ries with respect to q , we have

Φ(η, ξ ;q) = Φ(η, ξ,0) +
+∞∑
m=1

Fm(η, ξ)qm (31a)

Θ(η, ξ ;q) = Θ(η, ξ,0) +
+∞∑
m=1

Sm(η, ξ)qm (31b)

Ψ (η, ξ ;q) = Ψ (η, ξ,0) +
+∞∑
m=1

Gm(η, ξ)qm (31c)

where

Fm(η, ξ) = 1

m!
∂mΦ(η, ξ ;q)

∂qm

∣∣∣∣
q=0

(32a)

Sm(η, ξ) = 1

m!
∂mΘ(η, ξ ;q)

∂qm

∣∣∣∣
q=0

(32b)

Gm(η, ξ) = 1

m!
∂mΨ (η, ξ ;q)

∂qm

∣∣∣∣
q=0

(32c)

Note that (28a), (28b) and (28c) contain the auxiliary parame-
ter h̄. Assuming that h̄ is properly chosen so that the series
(31a)–(31c) are convergent at q = 1, we have, using (30a) and
(30b), the solution series
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3.2. High-order deformation equation

For simplicity, we define the vector
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Differentiating the zeroth-order deformation equations (28a)–
(28c) m times with respect to q , then setting q = 0, and fi-
nally dividing them by m!, we obtain the mth-order deformation
equations
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Let F ∗
m(η, ξ), S∗

m(η, ξ) and G∗
m(η, ξ) denote the particular so-

lutions of (35a)–(35c). Using (26a)–(26c), we have the general
solutions

Fm(η, ξ) = F ∗
m(η, ξ) + Cm

1 exp(−η)

+ Cm
2 exp(η) + Cm

3 (39a)

Sm(η, ξ) = S∗
m(η, ξ) + Cm
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5 exp(η) + Cm

6 (39b)

gm(η, ξ) = G∗ (η, ξ) + Cm exp(−η) + Cm exp(η) (39c)
m 7 8
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where the coefficients Cm
1 , Cm

2 , Cm
3 , Cm

4 , Cm
5 , Cm

6 , Cm
7 and Cm

8
are determined by the boundary conditions (36), i.e.
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In this way, it is easy to solve the linear equations (35a)–(35c)
after the other in the order m = 1,2,3, . . . by means of the sym-
bolic computation software such as Mathematica, Maple.

4. Analysis of results

Liao [22] proved in general that, as long as a solution series
given by the homotopy analysis method is not divergent, it must
converge to the exact solution of nonlinear problems under in-
vestigation. Note that the solution series (33a)–(33c) contain the
auxiliary parameter h̄, which influences the convergence of the
series (33a)–(33c). Thus, mathematically, the series solutions
are dependent upon h̄. But, physically, the solution should be
independent of the auxiliary parameter h̄. As a result, the HAM
series must converge to the same result for all corresponding
values of h̄ which ensures the convergence. For example, given
c and Pr, the series of F ′′(0,0) converges to the same value,
for all possible values of auxiliary parameter h̄ which ensures
the convergence of the series. So, if one regards h̄ as a vari-
able and plots the curve F ′′(0,0) ∼ h̄, one would find a line
segment parallel to the horizontal axis: all values of h̄ below
this parallel line segment ensures the converges of the F ′′(0,0).
In the similar way, one can investigate the so-called h̄ curves
of many other terms which have important physical meanings,

Fig. 1. The comparison of Fη(η, ξ), Sη(η, ξ) and G(η, ξ) of the an-
alytic approximations with the exact solutions at ξ = 0. Open cir-
cles: exact solutions; Solid line: 25th-order HAM approximations for
h̄ = −1.5.
such as F ′′(0,1), S′′(0,0), S′′(0,1),G′(0,0), G′(0,1) and so
on. Finally, one would find a region of h̄ which ensures the con-
vergence of all HAM solution series. For details, please refer to
Liao [22] and others [25–40].

When ξ = 0, corresponding to the initial state, our analytic
solutions agree well with the exact solutions (15), as shown
in Fig. 1. When ξ = 1, corresponding to the steady-state, our
analytic solutions agree well with the numerical solutions, as
shown in Figs. 2–4. In additional, we have compared our sur-

Fig. 2. The comparison of Fη(η, ξ) of the analytic approximations with
the numerical solutions at ξ = 1 for the different parameter c when
Pr = 0.72. Filled circle: numerical solutions; Solid line: 25th-order
HAM approximations for h̄ = −1.5.

Fig. 3. The comparison of Sη(η, ξ) of the analytic approximations with
the numerical solutions at ξ = 1 for the different parameter c when
Pr = 0.72. Filled circle: numerical solutions; Solid line: 25th-order
HAM approximations h̄ = −1.5.
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Fig. 4. The comparison of G(η, ξ) of the analytic approximations with
the numerical solutions at ξ = 1 for the different parameter c when
Pr = 0.72. Filled circle: numerical solutions; Solid line: 25th-order
HAM approximations h̄ = −1.5.

Fig. 5. The comparison of Fηη(0, ξ), Sηη(0, ξ) and −Gη(0, ξ) of the
analytic approximations with the Banks’s results [5] at ξ = 1 for the
different parameter c when Pr = 0.72. Open circle: Banks’s results;
Solid line: 25th-order HAM approximations h̄ = −1.5.

face skin friction and heat transfer results Fηη(0,1), Sηη(0,1)

and −Gη(0,1) with those of Banks [5] and found them in
excellent agreement, as shown in Fig. 5. These verify the va-
lidity of the proposed analytic approach. In a similar way, it
is found that the solution series (33a)–(33c) are convergent in
the whole range of the dimensionless time ξ ∈ [0,1], as shown
in Figs. 6–8. Thus, by means of homotopy analysis method,
we obtain analytic series solutions which are accurate and uni-
Fig. 6. The analytic approximations of Fηη(0, ξ) for 0 � ξ � 1 for dif-
ferent c when Pr = 0.72 and h̄ = −1.5. Solid line: 20th-order HAM
approximations; Filled circles: 25th-order HAM approximations.

Fig. 7. The analytic approximations of Sηη(0, ξ) for 0 � ξ � 1 for dif-
ferent c when Pr = 0.72 and h̄ = −1.5. Solid line: 20th-order HAM
approximations; Filled circles: 25th-order HAM approximations.

formly valid for all dimensionless time ξ ∈ [0,1] in the whole
spatial region 0 � η < +∞. Such kind of solutions have not
been reported, to the best of our knowledge.

The variation of the surface shear stresses in x- and y-
directions and the surface heat transfer Fηη(0, ξ), Fηη(0, ξ),
−Gη(0, ξ) with dimensionless time ξ , for several values of
c when Pr = 0.72, is drawn in Figs. 6–8. The surface shear
stresses in x- and y-directions Fηη(0, ξ), Gηη(0, ξ) increase
with ξ almost linearly. The surface heat transfer −Gη(0, ξ) de-
creases with ξ for ξ � ξ0 (ξ0 ≈ 0.88). Beyond this value, it
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Fig. 8. The analytic approximations of −Gη(0, ξ) for 0 � ξ � 1 for
different c when Pr = 0.72 and h̄ = −1.5. Solid line: 20th-order HAM
approximations; Filled circles: 25th-order HAM approximations.

Fig. 9. The variation of the velocity profile Fη(η, ξ) for c = 0.5 and
Pr = 0.72 when h̄ = −1.5.

increases. The surface shear stresses in x-direction Fηη(0, ξ)

decrease as the parameter c increase, while the surface shear
stresses in y-direction increase Sηη(0, ξ) as the parameter c in-
crease. The surface heat transfer −Gη(0, ξ) also increase as the
parameter c increases.

The development of the velocity profiles in the x- and
y-directions Fη(η, ξ), Sη(η, ξ) and the temperature profiles
G(η, ξ) for c = 0.5 and Pr = 0.72 is shown in Figs. 9–11. We
can see that these profiles develop rapidly from rest as τ in-
creases from zero to ∞.
Fig. 10. The variation of the velocity profile Sη(η, ξ) for c = 0.5 and
Pr = 0.72 when h̄ = −1.5.

Fig. 11. The variation of the temperature profile G(η, ξ) for c = 0.5 and
Pr = 0.72 when h̄ = −1.5.

The curves of the local skin friction coefficients Cf x and
Cfy versus τ for a fixed value of the parameter c when Pr =
0.72 are shown in Figs. 12 and 13, respectively. Note that, at the
same dimensionless time τ ∈ (0,+∞) and for the same Prandtl
number Pr, the skin friction coefficient Cf x decreases as the
values of the parameter c enlarges, while the skin friction coef-
ficient Cfy increases as the values of the parameter c increase.
The curves of the local Nusselt number Nu versus τ for a fixed
value of the parameter c when Pr = 0.72 are shown in Figs. 14.
Note that at the same dimensionless time τ ∈ (0,+∞) and for
the same Prandtl number Pr, the Nusselt number Nu decreases
as the values of the parameter c enlarges.
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Fig. 12. The variation of the skin friction coefficient Cf x as a function
of τ for the different parameter c when Pr = 0.72 and h̄ = −1.5.

Fig. 13. The variation of the skin friction coefficient Cfy as a function
of τ for the different parameter c when Pr = 0.72 and h̄ = −1.5.

5. Conclusions

In this paper, we have investigated the unsteady free convec-
tion flow in the stagnation-point region of a three-dimensional
body in an ambient fluid. The original momentum and energy
balance equations have been re-formulated by means of a set
of new similarity transformations. Then the homotopy analysis
method has been applied to obtain the accurate series solu-
tions of the resulting equations. These solutions are valid for
all dimensionless time 0 � τ < ∞ in the whole spatial region
0 � η < ∞. It is expected that the similar similarity transforma-
tions can be used to other unsteady free convection problems.
It is also expected that the proposed analytic technique can be
Fig. 14. The variation of the Nusselt number Nu as a function of τ for
the different parameter c when Pr = 0.72 and h̄ = −1.5.

used to investigate other similar nonlinear problems appeared
in this field by the similar procedures.
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